WHAT IS CLAIMED IS:

1. A glycopeptide of formula I:

(I)

wherein:

5

R¹ is an amino containing saccharide group substituted on the amine with a substituent that comprises two or more (e.g. 2, 3, 4, 5, or 6) hydroxy (OH) groups;

 R^2 is hydrogen or a saccharide group optionally substituted with $-R^a-Y-R^b-(Z)_x$, R^f , $-C(O)R^f$, or $-C(O)-R^a-Y-R^b-(Z)_x$; R^3 is $-OR^c$, $-NR^cR^c$, $-O-R^a-Y-R^b-(Z)_x$, $-NR^c-R^a-Y-R^b-(Z)_x$, $-NR^cR^e$, or $-O-R^e$;

10 R^4 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, $-C(O)R^d$ and

10

15

a saccharide group optionally substituted with $-R^a-Y-R^b-(Z)_x$, R^f , $-C(O)R^f$, or $-C(O)-R^a-Y-R^b-(Z)_x$;

 R^5 is selected from the group consisting of hydrogen, halo, $-CH(R^c)-NR^cR^c$, $-CH(R^c)-NR^cR^e$, $-CH(R^c)-NR^c-R^a-Y-R^b-(Z)_x$, $-CH(R^c)-R^x$, and $-CH(R^c)-NR^c-R^a-C(=O)-R^x$;

 R^6 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, $-C(O)R^d$ and a saccharide group optionally substituted with $-NR^c-R^a-Y-R^b-(Z)_x$, or R^5 and R^6 can be joined, together with the atoms to which they are attached, form a heterocyclic ring optionally substituted with $-NR^c-R^a-Y-R^b-(Z)_x$;

 R^7 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, and $-C(O)R^d$;

R⁸ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R⁹ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R¹⁰ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic; or R⁸ and R¹⁰ are joined to form -Ar¹-O-Ar²-, where Ar¹ and Ar² are independently arylene or heteroarylene;

R¹¹ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic, or

25

20

R¹⁰ and R¹¹ are joined, together with the carbon and nitrogen atoms to which they are attached, to form a heterocyclic ring;

 R^{12} is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic, $-C(O)R^d$, $-C(NH)R^d$, $-C(O)NR^cR^c$, $-C(O)OR^d$, $-C(NH)NR^cR^c$ and $-R^a-Y-R^b-(Z)_x$, or R^{11} and R^{12} are joined, together with the nitrogen atom to which they are attached, to form a heterocyclic ring;

R¹³ is selected from the group consisting of hydrogen or -OR¹⁴;

R¹⁴ is selected from hydrogen, -C(O)R^d and a saccharide group;

each R^a is independently selected from the group consisting of alkylene, substituted alkylene, alkenylene, substituted alkenylene, alkynylene and substituted alkynylene;

each R^b is independently selected from the group consisting of a covalent bond, alkylene, substituted alkylene, alkenylene, substituted alkynylene and substituted alkynylene, provided R^b is not a covalent bond when Z is hydrogen;

each R^c is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic and $-C(O)R^d$;

each R^d is independently selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R^e is a saccharide group;

each R^f is independently alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, or heterocyclic;

15

20

25

10

5

 R^{x} is a nitrogen-linked amino saccharide or a nitrogen-linked heterocycle; X^{1} , X^{2} and X^{3} are independently selected from hydrogen or chloro; each Y is independently selected from the group consisting of oxygen, sulfur,

$$-S-S-, -NR^{c}-, -S(O)-, -SO_{2}-, -NR^{c}C(O)-, -OSO_{2}-, -OC(O)-, -NR^{c}SO_{2}-,$$

$$5 \qquad -C(O)NR^c-, -C(O)O-, -SO_2NR^c-, -SO_2O-, -P(O)(OR^c)O-, -P(O)(OR^c)NR^c-, -SO_2O-, -P(O)(OR^c)NR^c-, -P(O)(OR^c)N$$

$$-OP(O)(OR^c)O-, -OP(O)(OR^c)NR^c-, -OC(O)O-, -NR^cC(O)O-, -NR^cC(O)NR^c-, -OC(O)O-, -NR^cC(O)O-, -NR^cC(O)O$$

$$-OC(O)NR^{c}$$
-, $-C(=O)$ -, and $-NR^{c}SO_{2}NR^{c}$ -;

each Z is independently selected from hydrogen, aryl, cycloalkyl, cycloalkenyl, heteroaryl and heterocyclic;

 $n ext{ is } 0, 1 ext{ or } 2; ext{ and }$

x is 1 or 2;

or a pharmaceutically acceptable salt, stereoisomer, or prodrug thereof; provided the group R³ does not comprises more than one carboxy group; and provided the group R³ is not a substituent that comprises one or more saccharide groups and a carboxy (COOH) group; and

provided the compound of formula I is not a compound of formula II:

- a) wherein R^3 is OH; R^5 is hydrogen; R^{19} is -CH₂[CH(OH)]₄COOH; and R^{20} is -CH₂CH₂-NH-(CH₂)₉CH₃; or
- b) wherein R^3 is OH; R^5 is hydrogen; R^{19} is hydrogen; and R^{20} is $-CH_2CH_2-N(C(O)-3,4,5-trihydroxycyclohex-1-en-1-yl)- (CH₂)₉CH₃ (R,S,R isomer).$
- 2. The glycopeptide of claim 1 wherein R^1 is an amino containing saccharide group substituted on the amine with a group comprising two or more hydroxy groups that is selected from $-R^a-Y-R^b-(Z)_x$, R^f , $-C(O)R^f$, and $-C(O)-R^a-Y-R^b-(Z)$.
- 3. The glycopeptide of claim 1 wherein R¹ is a saccharide group of the formula:

15

wherein R^{15} comprises two or more hydroxy groups and is selected from $-R^a-Y-R^b-(Z)_x$, R^f , $-C(O)R^f$, and $-C(O)-R^a-Y-R^b-(Z)_x$; and R^{16} is hydrogen or methyl.

- 4. The glycopeptide of claim 3 wherein R¹⁵ is substituted alkyl, substituted alkenyl, substituted alkynyl, substituted cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic, substituted alkyl-C(O)-, substituted alkenyl-C(O)-, substituted alkynyl-C(O)-, substituted cycloalkyl-C(O)-, substituted cycloalkenyl-C(O)-, aryl-C(O)-, heteroaryl-C(O)-, or heterocyclic-C(O)-; wherein R¹⁵ comprises two or more hydroxy groups.
- 5. The glycopeptide of claim 3 wherein R¹⁵ is a group of formula -CH2-CH(OH)CH(OH)CH₂-Y-R^b-(Z)_x; wherein Y, R^b, Z, and x have the values defined in claim 1.
 - 6. The glycopeptide of claim 3 wherein R¹⁵ is a group of formula-CH2-CH(OH)CH(OH)CH₂-R¹⁷ wherein R¹⁷ is hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, or heterocyclic.

7. The glycopeptide of claim 1 which is a compound of formula II:

wherein:

R¹⁹ is hydrogen; R²⁰ is -R^a-Y-R^b-(Z)_x, R^f, -C(O)R^f, or -C(O)-R^a-Y-R^b-(Z)_x; and R^a, Y, R^b, Z, x, R^f, R³, and R⁵ have any of the values defined in claim 1; or a pharmaceutically acceptable salt, stereoisomer, or prodrug thereof.

- 8. The glycopeptide of claim 7 wherein R^3 is OH.
- 9. The glycopeptide of claim 7 wherein R⁵ is hydrogen.

11.

10. The glycopeptide of claim 27 wherein R^{19} is hydrogen; and R^{20} is selected from $-R^a-Y-R^b-(Z)_x$, R^f , $-C(O)R^f$, and $-C(O)-R^a-Y-R^b-(Z)_x$.

The glycopeptide of claim 10 wherein R²⁰ is substituted alkyl, substituted

- alkenyl, substituted alkynyl, substituted cycloalkyl, substituted cycloalkenyl, aryl,

 heteroaryl, heterocyclic, substituted alkyl-C(O)-, substituted alkenyl-C(O)-, substituted alkynyl-C(O)-, substituted cycloalkyl-C(O)-, aryl-C(O)-, heteroaryl-C(O)-, or heterocyclic-C(O)-; wherein R¹⁵ comprises two or more hydroxy groups.
- 12. The glycopeptide of claim 10 wherein R²⁰ is substituted alkyl, substituted alkenyl, substituted alkynyl, substituted alkyl-C(O)-, substituted alkenyl-C(O)-, substituted alkynyl-C(O)-; wherein R¹⁵ comprises two or more hydroxy groups.
 - 13. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of claim 1.
 - 14. The pharmaceutical composition of claim 13, which comprises a cyclodextrin.
- 15. A method of treating a mammal having a bacterial disease, the method comprising administering to the mammal a therapeutically effective amount of a glycopeptide of claim 1.
 - 16. A method of treating a mammal having a bacterial disease, the method comprising administering to the mammal a therapeutically effective amount of a glycopeptide of claim 7.

17. A method of treating a mammal having a bacterial disease, the method comprising administering to the mammal a therapeutically effective amount of a pharmaceutical composition of claim 13.